30 research outputs found

    An advanced computational intelligent framework to predict shear sonic velocity with application to mechanical rock classification

    Get PDF
    Shear sonic wave velocity (Vs) has a wide variety of implications, from reservoir management and development to geomechanical and geophysical studies. In the current study, two approaches were adopted to predict shear sonic wave velocities (Vs) from several petrophysical well logs, including gamma ray (GR), density (RHOB), neutron (NPHI), and compressional sonic wave velocity (Vp). For this purpose, five intelligent models of random forest (RF), extra tree (ET), Gaussian process regression (GPR), and the integration of adaptive neuro fuzzy inference system (ANFIS) with differential evolution (DE) and imperialist competitive algorithm (ICA) optimizers were implemented. In the first approach, the target was estimated based only on Vp, and the second scenario predicted Vs from the integration of Vp, GR, RHOB, and NPHI inputs. In each scenario, 8061 data points belonging to an oilfield located in the southwest of Iran were investigated. The ET model showed a lower average absolute percent relative error (AAPRE) compared to other models for both approaches. Considering the first approach in which the Vp was the only input, the obtained AAPRE values for RF, ET, GPR, ANFIS + DE, and ANFIS + ICA models are 1.54%, 1.34%, 1.54%, 1.56%, and 1.57%, respectively. In the second scenario, the achieved AAPRE values for RF, ET, GPR, ANFIS + DE, and ANFIS + ICA models are 1.25%, 1.03%, 1.16%, 1.63%, and 1.49%, respectively. The Williams plot proved the validity of both one-input and four-inputs ET model. Regarding the ET model constructed based on only one variable,Williams plot interestingly showed that all 8061 data points are valid data. Also, the outcome of the Leverage approach for the ET model designed with four inputs highlighted that there are only 240 "out of leverage" data sets. In addition, only 169 data are suspected. Also, the sensitivity analysis results typified that the Vp has a higher effect on the target parameter (Vs) than other implemented inputs. Overall, the second scenario demonstrated more satisfactory Vs predictions due to the lower obtained errors of its developed models. Finally, the two ET models with the linear regression model, which is of high interest to the industry, were applied to diagnose candidate layers along the formation for hydraulic fracturing. While the linear regression model fails to accurately trace variations of rock properties, the intelligent models successfully detect brittle intervals consistent with field measurements

    A CSA-LSSVM model to estimate diluted heavy oil viscosity in the presence of kerosene

    No full text
    Viscosity is one of the properties that has important role in enhanced oil recovery processes, simulating reservoirs, and designing production facilities. Therefore, measurement and calculation of its accurate value is worthwhile. While the experimental methods for measurement of viscosity are expensive and time consuming, some credible correlations were developed to predict the viscosity with enough accuracy. For this purpose, in this study a balky data bank was gathered from open literature sources, and then one machine learning based approach called least square support vector machine (LSSVM) was utilized for prediction of heavy and extra-heavy crude oil viscosity. The parameters of proposed model were optimized by couple simulated annealing (CSA) optimization approach. The inputs of this model are temperature and kerosene mass fraction and the only output is viscosity

    Designing a committee of machines for modeling viscosity of water-based nanofluids

    No full text
    202303 bcwwVersion of RecordSelf-fundedPublishe
    corecore